A Semantic-Driven Knowledge Representation Model for the Materials Engineering Application
نویسندگان
چکیده
A Materials Engineering Application (MEA) has been presented as a solution for the problems of materials design, solutions simulation, production and processing, and service evaluation. Large amounts of data are generated in the MEA distributed and heterogeneous environment. As the demand for intelligent engineering information applications increases, the challenge is to effectively organize these complex data and provide timely and accurate on-demand services. In this paper, based on the supporting environment of Open Cloud Services Architecture (OCSA) and Virtual DataSpace (VDS), a new semantic-driven knowledge representation model for MEA information is proposed. Faced with the MEA constantly changing user requirements, this model elaborates the semantic representation of data, services and their relationships to support the construction of domain knowledge ontology. Then, based on the ontology modeling in VDS, the semantic representations of association mapping, rule-based reasoning, and evolution tracking are analyzed to support MEA knowledge acquisition. Finally, an application example of knowledge representation in the field of materials engineering is given to illustrate the proposed model, and some experimental comparisons are discussed for evaluating and verifying the effectiveness of this method.
منابع مشابه
Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملKnowledge representation and processing methods in Semantic Web
The goal is to take a closer look at progress of knowledge engineering in the field of Semantic Web. Along with theory of Knowledge Representation (KR) and knowledge processing methods such as Description Logic (DL), reasoning mechanisms and ontology modelling languages (OWL, RDF, RDFS), the thesis shows the practical usage of the mentioned approaches in building systems driven by ontologies. A...
متن کاملOntology Based Feature Driven Development Life Cycle
The upcoming technology support for semantic web promises fresh directions for Software Engineering community. Also semantic web has its roots in knowledge engineering that provoke software engineers to look for application of ontology applications throughout the Software Engineering lifecycle. The internal components of a semantic web are “light weight”, and may be of less quality standards th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Data Science Journal
دوره 13 شماره
صفحات -
تاریخ انتشار 2014